(Small) Nuclear Energy and the Path (Race) to Net Zero

with thoughts on the So What for Saskatchewan

Bob Walker, PhD, FCAE Senior Fellow ISSP

The Climate Emergency and the Path (Race) to Net Zero - Context

- Lessons from the COVID-19 Pandemic
- Transitions within Transitions
- Energy System Transition
- Conversations

Canada is a Tier 1 Nuclear Nation

Cigar Lake Uranium Mine

Bruce Power NGS

Canadian Nuclear Safety Commission

Pickering NGS

CANDU Reactor

> Canadian Nuclear Laboratories

Point Lepreau NGS

Darlington NGS

3

Nuclear (Fission) Energy Today

- ~440 nuclear reactors worldwide in ~ 30 countries. ~10% of global electricity generation, ~400 GWe installed.
- Canada has 19 reactors providing ~17% of the country's electricity, ~ 60% in Ontario.
- ~50 reactors under construction worldwide, primarily in Asia, led by China, India and Russia.
- New Builds in Asia are largely on budget and on schedule.
- The refurbishment of Ontario's CANDU fleet, at >\$25B, is the largest clean-energy project in North America.
- Data show that nuclear energy is among the lowest Green House Gas (GHG) emitting, most affordable, most scalable and safest (including accidents) energy source.

Nuclear (Fission) Energy Today

... but

- Some nuclear nations are exiting nuclear energy, e.g. Germany, Belgium, Switzerland, Taiwan.
- US is seeing nuclear plants in unregulated markets shutting down before end of their operational life because they are no longer economical.
- First-of-Kind (Generation III) New Builds, primarily in the US and EU are over budget and behind schedule.
- Three Mile Island, Chernobyl and Fukushima accidents continue to shape public perceptions of risk.
- Public polling shows persistent high levels of *nuclear energy hesitancy*.

Nuclear Energy Today - Elephants in the Room

Ionizing Radiation

- Nuclear power plants release harmful radiation.
- Ionizing radiation is naturally occurring. Nuclear power plants release a very small fraction of these normal background levels.

Accidents

- There have been severe accidents; they will occur again.
- UN studies assess that the total number of deaths attributable to ionizing radiation from all nuclear accidents at ~ a couple hundred.
- Science shows there is a threshold below Taking into account all risks to human life in the which harmful effects have no All points are true / likely true, technology, nuclear is detected. Science cannot yet Who to trust/distrust? ans of electricity generation.

Nuclear Waste

- But why take the risk? Nuclear waste is dangerous; there is no Nuclear power plants are very expensive and take proven solution for its disposa Are there alternatives uild. • Nuclear waste is dangerous;
- A Deep Geological Repository (DGR) is a viable solution; geosphere disposal provides effective barriers. Natural DGRs work.
- Used nuclear fuel has very low volume compared to (toxic) waste from all other forms of energy generation.
- Nuclear energy is the only generating technology where waste costs are factored into its pricing.

- Costs to build a conventional (>1GWe) plant are very expensive and schedules are very long, yes.
- Nuclear power plants are also relatively inexpensive to operate, last for a very long time (~40-80 years), and have high capacity factors (operate \sim 90% + of the time).
- All considered, nuclear power plants are very competitive economically.

Why (More/Small) Nuclear Energy? (4x4)

Yesterday/Today

- Electricity Grid Reliability/Security
- Cost to Ratepayers
- VERY low GHG Emissions
- Reduced Air Pollution

Tomorrow - Today + ...

- Dispatchable enabling variable renewables
- Fit for smaller grids
- Beyond electricity
- Clean energy security

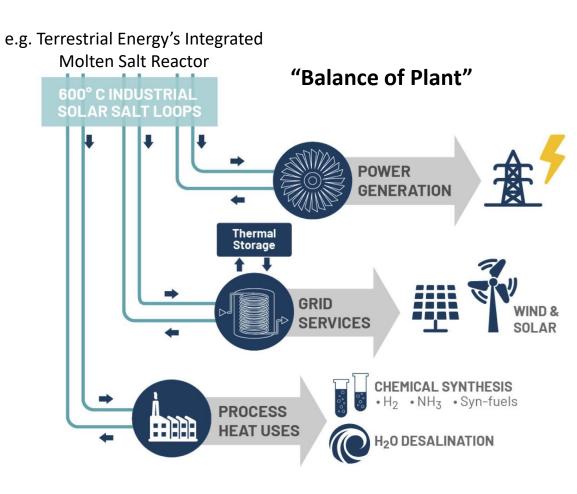
Nuclear Energy and the Global Energy System Transition – Evolving Perspectives

- 2015 Paris Climate Agreement A Commitment to Action
 - Variable Renewables will lead the way.
 - No/little mention of the role of nuclear energy.
- 2018 Clean Energy Ministerial launches its Nuclear Innovation for a Clean Energy (NICE) Future initiative
 - Focus placed on renewables and nuclear energy working together.
- 2018 Report of the Intergovernmental Panel on Climate Change
 - All IPPC Scenarios require lots more variable renewables and more nuclear energy.
 - 1/2 of IPPC scenarios postulate a 60% growth in nuclear energy.
- 2019 World Energy Outlook of the International Energy Agency
 - A sustainable energy future needs all low-carbon solutions, including lots more variable renewables and more nuclear energy.
 - The IEA's 2050 Net Zero scenario postulates a 36% growth in nuclear energy.

Nuclear Energy and the Path (Race) to Net Zero

Nuclear Energy Priorities (IPCC, IEA)

- Extend the life of the conventional nuclear fleet where possible.
- Deliver planned conventional nuclear New Builds with Generation III (passive safety) designs.


... and

- Transition rapidly to *New Nuclear Energy* that
 - greatly reduces construction costs and time,
 - uses simpler and safer designs,
 - Provides the dispatchable solution to enable scale-up of Variable Renewable Energy,
 - looks beyond grid-level electricity markets, and
 - reduces nuclear waste streams.

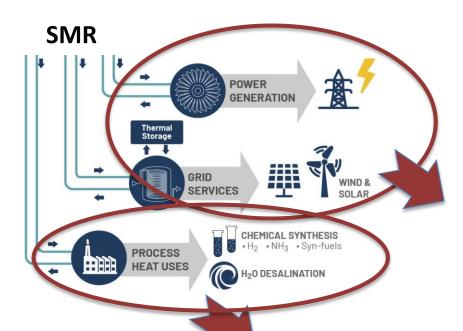
New Nuclear Energy: Innovation Goals

~ 70 companies worldwide are presently developing SMR solutions for	Fourth-Generation Reactor Technology			
market readiness within ~2-10 years	Competitive	Competitive	Reduced	Access to Energy
	Energy Pricing (w/o carbon tax)	Time to Market	Capital Requirements	Markets Beyond Electricity
Small Modular Reactors	Improved Safety, Security, Safeguards Margins	Electricity/ Heat Co- Generation	(Near) Closed Nuclear Fuel Cycles	No/Minimal Very Long-Term Radioactive Waste
Almost all designs are based on designs prototyped decades ago, updated with novel engineering approaches	Compatibility with Renewables	Load Following Et ce	Reduced Environmental Footprint <i>terg</i>	Enabler of the Hydrogen Economy

View 1: The SMR Value Proposition the Energy System's Multi-tool

On Grid Power (~150-300 MWe)

- Fossil fuels (on-site) replacement
- Electrification growth
- Dispatchable energy solution
- Variable Renewables enabler


Resource Extraction and Heavy Industry (~10-80 MWe)

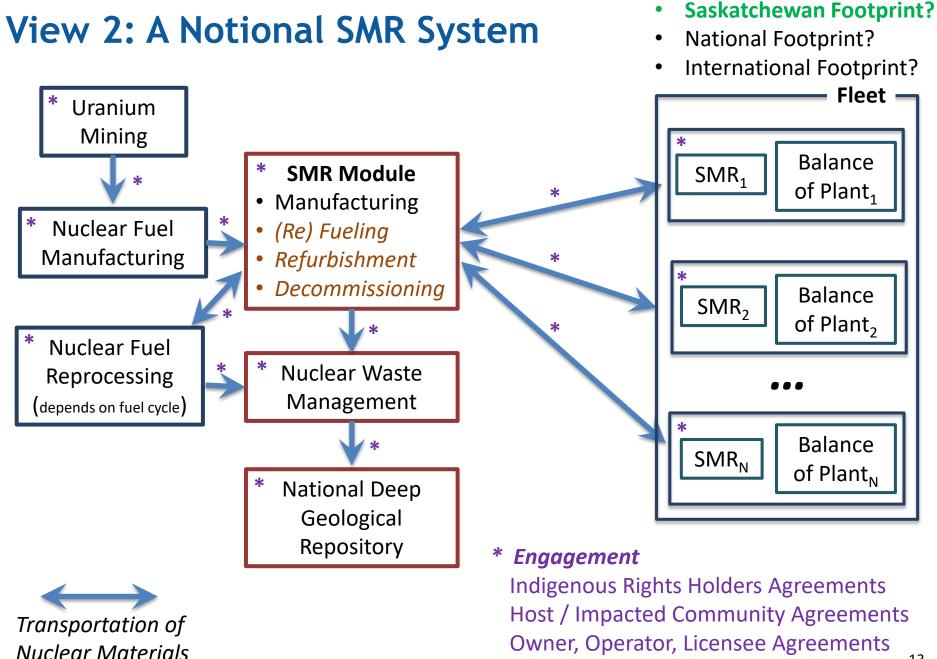
- Combined heat & power
- On and Off Grid
- Synthetic fuels, clean chemicals
- Hydrogen economy

Remote Communities (~1-10 MWe)

- Electricity
- District heating
- Desalination, food production

View1: The SMR Value Proposition Helping Saskatchewan's Path to Net Zero?

Phase 1: Today to 2030: Migrate off Coal


- Natural Gas for Baseload and for Dispatchable Power
- Some Variable Renewables

Phase 2: 2030 - 2050: Migrate off Gas

- <u>If proven</u>, SMR(s) for Baseload and for Dispatchable Power
- More Variable Renewables

An additional Option:

- <u>If proven</u>, SMRs could also enable Saskatchewan's place in synthetic fuels, clean chemicals, hydrogen economy, etc.
- Jobs!

Regulatory Licenses

Canada's SMR Roadmap (2018) and Action Plan (2020)

Why Canada?

- Tier 1 Nuclear Nation
- Indicative SMR Markets
- Regulation of Nuclear Innovation

Action Plan

- Engagement is ramping up
- Partnerships are taking shape
- Demonstrations are moving forward

Key Milestones

- Early 2020's first micro SMR demonstration at CNL, more being planned
- 2028 first on-grid SMR built at Ontario Power Generation's Darlington NGS
- Early 2030's planning for roll out of on-grid SMRs in New Brunswick, Ontario, Saskatchewan, Alberta

A Call to Action: A Canadian Roadmap for Small Modular Reactors SUMMARY OF KEY FINDINGS

